Skip to main content
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 17:16
04 May 2020

The high memory consumption and computational costs of Recurrent neural network language models (RNNLMs) limit their wider application on resource constrained devices. In recent years, neural network quantization techniques that are capable of producing extremely low-bit compression, for example, binarized RNNLMs, are gaining increasing research interests. Directly training of quantized neural networks is difficult. By formulating quantized RNNLMs training as an optimization problem, this paper presents a novel method to train quantized RNNLMs from scratch using alternating direction methods of multipliers (ADMM). This method can also flexibly adjust the trade-off between the compression rate and model performance using tied low-bit quantization tables. Experiments on two tasks: Penn Treebank (PTB), and Switchboard (SWBD) suggest the proposed ADMM quantization achieved a model size compression factor of up to 31 times over the full precision baseline RNNLMs. Faster convergence of 5 times in model training over the baseline binarized RNNLM quantization was also obtained.

Value-Added Bundle(s) Including this Product

More Like This

  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00