Skip to main content
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 00:15:03
08 Jun 2021

Lossy compression algorithms trade bits for quality, aiming at reducing as much as possible the bitrate needed to represent the original source (or set of sources), while preserving the source quality. In this letter, we propose a novel paradigm of compression algorithms, aimed at minimizing the information loss perceived by the final user instead of the actual source quality loss, under compression rate constraints. As main contributions, we first introduce the concept of perceived information (PI), which reflects the information perceived by a given user experiencing a data collection, and which is evaluated as the volume spanned by the sources features in a personalized latent space. We then formalize the rate-PI optimization problem and propose an algorithm to solve this compression problem. Finally, we validate our algorithm against benchmark solutions with simulation results, showing the gain in taking into account users' preferences while also maximizing the perceived information in the feature domain.

Chairs:
João Ascenso

Value-Added Bundle(s) Including this Product

More Like This

  • SPS
    Members: Free
    IEEE Members: $25.00
    Non-members: $40.00
  • SPS
    Members: Free
    IEEE Members: Free
    Non-members: Free