Skip to main content
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 00:08:46
09 Jun 2021

Human subjective evaluation is the ”gold standard” to evaluate speech quality optimized for human perception. Perceptual objective metrics serve as a proxy for subjective scores. The conventional and widely used metrics require a reference clean speech signal, which is unavailable in real recordings. The no-reference approaches correlate poorly with human ratings and are not widely adopted in the research community. One of the biggest use cases of these perceptual objective metrics is to evaluate noise suppression algorithms. This paper introduces a multi-stage self-teaching based perceptual objective metric that is designed to evaluate noise suppressors. The proposed method generalizes well in challenging test conditions with a high correlation to human ratings.

Chairs:
Vikramjit Mitra

Value-Added Bundle(s) Including this Product

More Like This

  • SPS
    Members: Free
    IEEE Members: $25.00
    Non-members: $40.00
  • SPS
    Members: Free
    IEEE Members: Free
    Non-members: Free