Skip to main content
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 00:17:24
10 Jun 2021

We propose a novel automotive radar imaging technique to provide high-resolution information in four dimensions, i.e., range, Doppler, azimuth, and elevation, by exploiting a joint sparsity design in frequency spectrum and array configurations. Random sparse step-frequency waveform is proposed to synthesize a large effective bandwidth and achieve high range resolution profiles. This concept is extended to multi-input multi-output (MIMO) radar by applying phase codes along the slow time to synthesize a two-dimensional (2D) sparse array with a high number of virtual array elements which enable high-resolution direction finding in both azimuth and elevation. The 2D sparse array acts as a sub-Nyquist sampler of the corresponding uniform rectangular array (URA), and the corresponding URA response is recovered by completing a low-rank block Hankel matrix. The proposed imaging radar provides point clouds with a resolution comparable to LiDAR but with a much lower cost and is insensitive to weather conditions.

Chairs:
Shunqiao Sun

Value-Added Bundle(s) Including this Product

More Like This

  • SPS
    Members: Free
    IEEE Members: Free
    Non-members: Free
  • SPS
    Members: Free
    IEEE Members: $25.00
    Non-members: $40.00
  • SPS
    Members: Free
    IEEE Members: $25.00
    Non-members: $40.00