Skip to main content

End-To-End Dereverberation, Beamforming, And Speech Recognition With Improved Numerical Stability And Advanced Frontend

Wangyou Zhang, Christoph Boeddeker, Shinji Watanabe, Tomohiro Nakatani, Marc Delcroix, Keisuke Kinoshita, Tsubasa Ochiai, Naoyuki Kamo, Reinhold Haeb-Umbach, Yanmin Qian

  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 00:11:02
10 Jun 2021

Recently, the end-to-end approach has been successfully applied to multi-speaker speech separation and recognition in both single-channel and multichannel conditions. However, severe performance degradation is still observed in the reverberant and noisy scenarios, and there is still a large performance gap between anechoic and reverberant conditions. In this work, we focus on the multichannel multi-speaker reverberant condition, and propose to extend our previous framework for end-to-end dereverberation, beamforming, and speech recognition with improved numerical stability and advanced frontend subnetworks including voice activity detection like masks. The techniques significantly stabilize the end-to-end training process. The experiments on the spatialized wsj1-2mix corpus show that the proposed system achieves about 35% WER relative reduction compared to our conventional multi-channel E2E ASR system, and also obtains decent speech dereverberation and separation performance (SDR = 12.5 dB) in the reverberant multi-speaker condition while trained only with the ASR criterion.

Chairs:
Abdelrahman Mohamed

Value-Added Bundle(s) Including this Product

More Like This

  • SPS
    Members: Free
    IEEE Members: Free
    Non-members: Free
  • SPS
    Members: Free
    IEEE Members: $25.00
    Non-members: $40.00
  • SPS
    Members: Free
    IEEE Members: $25.00
    Non-members: $40.00