Skip to main content

A Novel Nmf-Hmm Speech Enhancement Algorithm Based On Poisson Mixture Model

Yang Xiang, Liming Shi, Jesper Lisby Højvang, Morten Højfeldt Rasmussen, Mads Græsbøll Christensen

  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 00:13:30
10 Jun 2021

In this paper, we propose a novel non-negative matrix factorization (NMF) and hidden Markov model (NMF-HMM) based speechenhancement algorithm, which applies the Poisson mixture model(PMM). Compared to our previous proposed NMF-HMM method, the novel PMM-NMF-HMM algorithm uses the Poisson mixture distribution as the state conditional likelihood function for HMM ratherthan the single Poisson distribution. This means that there are the more basis matrices to be used to model the speech and noise signal, so the more signal information can be captured by using the PMM. Our algorithm includes the training and enhancement stage. In thetraining stage, our method can also achieve the computationally efficient multiplicative update (MU) for parameters like our previousNMF-HMM algorithm. In the online speech enhancement stage, a novel PMM-NMF-HMM minimum mean-square error (MMSE) estimator is developed. The experimental results indicate that the proposed PMM-NMF-HMM can acquire higher short-time objec-tive intelligibility (STOI) and perceptual evaluation of speech quality(PESQ) score than NMF-HMM. Additionally, our method can also outperform other state-of-the-art NMF-based supervised speech enhancement algorithms.

Chairs:
Timo Gerkmann

Value-Added Bundle(s) Including this Product

More Like This

  • SPS
    Members: Free
    IEEE Members: Free
    Non-members: Free
  • SPS
    Members: Free
    IEEE Members: $25.00
    Non-members: $40.00
  • SPS
    Members: Free
    IEEE Members: $25.00
    Non-members: $40.00