Skip to main content
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 00:11:44
11 Jun 2021

Deep unfolding showed to be a very successful approach for accelerating and tuning classical signal processing algorithms. In this paper, we propose learned Gaussian-mixture AMP (L-GM-AMP) - a plug-and-play compressed sensing (CS) recovery algorithm suitable for any i.i.d. source prior. Our algorithm builds upon Borgerding’s learned AMP (LAMP), yet significantly improves it by adopting a universal denoising function within the algorithm. The robust and flexible denoiser is a byproduct of modelling source prior with a Gaussian-mixture (GM), which can well approximate continuous, discrete, as well as mixture distributions. Its parameters are learned using standard backpropagation algorithm. To demonstrate robustness of the proposed algorithm, we conduct Monte-Carlo (MC) simulations for both mixture and discrete distributions. Numerical evaluation shows that the L-GM-AMP algorithm achieves state-of-the-art performance without any knowledge of the source prior.

Chairs:
Wei Yu

Value-Added Bundle(s) Including this Product

More Like This

  • SPS
    Members: Free
    IEEE Members: $25.00
    Non-members: $40.00
  • SPS
    Members: Free
    IEEE Members: Free
    Non-members: Free