Compressive Wideband Spectrum Sensing And Carrier Frequency Estimation With Unknown Mimo Channels
Hongwei Wang, Jilin Wang, Jun Fang, Hongbin Li
-
SPS
IEEE Members: $11.00
Non-members: $15.00Length: 00:13:02
We consider the problem of joint wideband spectrum sensing and carrier frequency estimation in a sub-Nyquist sampling framework. Specifically, a multi-antenna receiver is used to estimate the carrier frequencies and power spectra of multiple narrowband transmissions that spread over a wide frequency band. Unlike existing works that assume the source signals impinge on the receiver via a line-of-sight (LOS) path, we consider a more practical multiple-input multiple-output (MIMO) channel characterized by multipath propagation. A new sub-Nyquist sampling architecture is proposed, where each antenna output passes through two channels, namely, a direct path and a delayed path with a pre-determined time delay. The signal at each channel is then sampled by a synchronized low-rate analog-to-digital converter (ADC). We utilize the collected data samples to build a set of cross-correlation matrices with different time lags and develop a CANDECOMP/PARAFAC (CP) decomposition-based method to recover the carrier frequencies and power spectra of the source signals. Simulation results are presented to illustrate the effectiveness of the proposed method.
Chairs:
Braham Himed