Skip to main content
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 00:15:08
11 Jun 2021

In this work we address disentanglement of style and content in speech signals. We propose a fully convolutional variational autoencoder employing two encoders: a content encoder and a style encoder. To foster disentanglement, we propose adversarial contrastive predictive coding. This new disentanglement method does neither need parallel data nor any supervision. We show that the proposed technique is capable of separating speaker and content traits into the two different representations and show competitive speaker-content disentanglement performance compared to other unsupervised approaches. We further demonstrate an increased robustness of the content representation against a train-test mismatch compared to spectral features, when used for phone recognition.

Chairs:
Shuchin Aeron

Value-Added Bundle(s) Including this Product

More Like This

  • SPS
    Members: Free
    IEEE Members: $25.00
    Non-members: $40.00
  • SPS
    Members: Free
    IEEE Members: $25.00
    Non-members: $40.00
  • SPS
    Members: Free
    IEEE Members: $25.00
    Non-members: $40.00