Skip to main content
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 00:08:19
10 May 2022

In this paper, we propose a deep neural network (DNN)-based single-microphone speech enhancement algorithm characterized by a short latency and low computational resources. Many speech enhancement algorithms suffer from low noise reduction capabilities between pitch harmonics, and in severe cases, the harmonic structure may even be lost. Recognizing this drawback, we propose a new weighted loss that emphasizes pitch-dominated frequency bands. For that, we propose a method, applied only at the training stage, to detect these frequency bands. The proposed method is applied to speech signals contaminated by several noise types, and in particular, typical domestic noise drawn from ESC-50 and DEMAND databases, demonstrating its applicability to ?stay-at-home? scenarios.

More Like This

  • CIS
    Members: Free
    IEEE Members: Free
    Non-members: Free
  • CIS
    Members: Free
    IEEE Members: Free
    Non-members: Free
  • CIS
    Members: Free
    IEEE Members: Free
    Non-members: Free