Skip to main content

OT CLEANER: LABEL CORRECTION AS OPTIMAL TRANSPORT

Jun Xia, Cheng Tan, Lirong Wu, Yongjie Xu, Stan Z. Li

  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 00:05:24
11 May 2022

Datasets with noisy labels present challenges for training Deep Neural Networks (DNNs) with high generalization ability. An direct idea is to correct the noisy labels for robust learning. However, existing label correction methods can not handle with heavy noise or datasets with samples of many categories so well. We explain the reasons and introduce a global label distribution regularization to remedy these deficiencies. With this regularization, we convert the label correction to the Optimal Transport (OT) formulation and propose to utilize a fast version of the Sinkhorn-Knopp algorithm for finding an approximate solution efficiently at scale. Experiments on benchmark datasets with both synthetic and real-world label noise show that the superiority of our OT Cleaner in terms of both training efficiency and classification accuracy. The code is available at: \url{https://github.com/junxia97/OT-Cleaner}.

More Like This

  • CIS
    Members: Free
    IEEE Members: Free
    Non-members: Free
  • CIS
    Members: Free
    IEEE Members: Free
    Non-members: Free
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00