Skip to main content
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 00:13:30
12 May 2022

In Federated learning (FL) systems, a centralized entity (server), instead of access to the training data, has access to model parameter updates computed by each participant independently and based solely on their samples. Unfortunately, FL is susceptible to model poisoning attacks, in which malicious or malfunctioning entities share polluted updates that can compromise the model's accuracy. In this study, we propose FedClean, an FL mechanism that is robust to model poisoning attacks.

More Like This

  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
  • CIS
    Members: Free
    IEEE Members: Free
    Non-members: Free
  • CIS
    Members: Free
    IEEE Members: Free
    Non-members: Free