Skip to main content

Epileptic Spike Detection by Recurrent Neural Networks with Self-Attention Mechanism

Kosuke Fukumori, Toshihisa Tanaka, Noboru Yoshida, Hidenori Sugano, Madoka Nakajima

  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 00:08:02
12 May 2022

Automated identification of epileptiform discharges in electroencephalograms (EEG) for the diagnosis of epilepsy can mitigate the burden of manual searches. Recent effective methods based on machine learning-based classification have used detection of candidate waveforms with signal processing and pattern matching as preprocessing, and this method can determine the overall performance. This paper thus considers a scenario where candidates are not detected; that is, we propose a recurrent neural network (RNN)-based self-attention model that can be fitted from the EEG segments generated without spike candidates being detected. In comparison with the state-of-the-art machine learning models that can be applied to EEG classification (LightGBM and EEGNet), the proposed model achieved higher performance (average accuracy: 90.2%). This result strongly suggests that the self-attention mechanism is suitable to automated identification of the epileptiform discharge in the EEG.

More Like This

  • SPS
    Members: $10.00
    IEEE Members: $22.00
    Non-members: $30.00
  • CIS
    Members: Free
    IEEE Members: Free
    Non-members: Free
  • CIS
    Members: Free
    IEEE Members: Free
    Non-members: Free