Skip to main content
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 05:53
28 Oct 2020

In this paper, we describe a fast and light-weight portrait segmentation method based on a new highly light-weight backbone (HLB) architecture. The core element of HLB is a bottleneck-based factorized block (BFB) that has much fewer parameters than existing alternatives while keeping good learning capacity. Consequently, the HLB-based portrait segmentation method can run faster than the existing methods yet retaining the competitive accuracy performance with state-of-the-arts. Experiments conducted on two benchmark datasets demonstrate the effectiveness and efficiency of our method.

Value-Added Bundle(s) Including this Product

More Like This

  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00