IMAGE DEHAZING WITH CONTEXTUALIZED ATTENTIVE U-NET
Yean-Wei Lee, Lai-Kuan Wong, John See
-
SPS
IEEE Members: $11.00
Non-members: $15.00Length: 07:50
Haze, which occurs due to the accumulation of fine dust or smoke particles in the atmosphere, degrades outdoor imaging, resulting in reduced attractiveness of outdoor photography and the effectiveness of vision-based systems. In this paper, we present an end-to-end convolutional neural network for image dehazing. Our proposed U-Net based architecture employs Squeeze-and-Excitation (SE) blocks at the skip connections to enforce channel-wise attention and parallelized dilated convolution blocks at the bottleneck to capture both local and global context, resulting in a richer representation of the image features. Experimental results demonstrate the effectiveness of the proposed method in achieving state-of-the-art performance on the benchmark SOTS dataset.