Skip to main content
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 13:07
28 Oct 2020

In this paper, we propose a Variational Auto-Encoder able to correctly reconstruct a fine mesh from a very low-dimensional latent space. The architecture avoids the usual coarsening of the graph and relies on pooling layers for the decoding phase and on the mean values of the training set for the up-sampling phase. We select new operators compared to previous work, and in particular, we define a new Dirac operator which can be extended to different types of graph structured data. We show the improvements over the previous operators and compare the results with the current benchmark on the Coma Dataset.

Value-Added Bundle(s) Including this Product

More Like This

  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00