Skip to main content
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 00:12:17
20 Sep 2021

In this paper we propose a new framework to categorize social interactions in egocentric videos, we named InteractionGCN. Our method extracts patterns of relational and non-relational cues at the frame level and uses them to build a relational graph from which the interactional context at the frame level is estimated via a Graph Convolutional Network based approach. Then it propagates this context over time, together with first-person motion information, through a Gated Recurrent Unit architecture. Ablation studies and experimental evaluation on two publicly available datasets validate the proposed approach and establish state of the art results.

Value-Added Bundle(s) Including this Product

More Like This

  • SPS
    Members: Free
    IEEE Members: Free
    Non-members: Free
  • SPS
    Members: Free
    IEEE Members: $25.00
    Non-members: $40.00
  • SPS
    Members: Free
    IEEE Members: $25.00
    Non-members: $40.00