Skip to main content
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 00:15:21
19 Oct 2022

High-resolution X-ray computed tomography (XCT) is an important technique for the inspection of additively manufactured (AM) parts. While XCT is typically used off-line to inspect a subset of manufactured parts, significantly accelerating measurement speed while retaining accuracy would enable use of XCT for in-line inspection to rapidly identify defects in each part as it is manufactured. Here, we propose a deep learning (DL) based approach that uses computer aided design (CAD) models of the AM parts and physics-based information to rapidly produce high-quality reconstructions from sparse XCT measurements without high quality ground truth data. Our approach uses a generative adversarial neural network (GAN) to produced realistic training data from the CAD-based simulations and a deep neural network that is trained using data from the first stage to produce accurate 3D reconstructions. Using experimental XCT data of metal parts, we demonstrate enhanced defect detection capabilities while dramatically reducing the scan time.

Value-Added Bundle(s) Including this Product

More Like This

  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00