Skip to main content
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 00:12:26
18 Oct 2022

We propose a unified view of unsupervised non-local methods for image denoising that linearly combine noisy image patches. The best methods, established in different modeling and estimation frameworks, are two-step algorithms. Leveraging Stein?s unbiased risk estimate (SURE) for the first step and the "internal adaptation", a concept borrowed from deep learning theory, for the second one, we show that our NL-Ridge approach enables to reconcile several patch aggregation methods for image denoising. in the second step, our closed-form aggregation weights are computed through multivariate Ridge regressions. Experiments on artificially noisy images demonstrate that NL-Ridge may outperform well established state-of-the-art unsupervised denoisers such as BM3D and NL-Bayes, as well as recent unsupervised deep learning methods, while being simpler conceptually.

Value-Added Bundle(s) Including this Product

More Like This

  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00