Skip to main content

AAFACE: ATTRIBUTE-AWARE ATTENTIONAL NETWORK FOR FACE RECOGNITION

Niloufar Alipour Talemi, Hossein Kashiani, Sahar Rahimi Malakshan, Mohammad Saeed Ebrahimi Saadabadi, Nima Najafzadeh, Mohammad Akyash, Nasser M. Nasrabadi

  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
Lecture 09 Oct 2023

In this paper, we present a new multi-branch neural network that simultaneously performs soft biometric (SB) prediction as an auxiliary modality and face recognition (FR) as the main task. Our proposed network named AAFace utilizes SB attributes to enhance the discriminative ability of FR representation. To achieve this goal, we propose an attribute-aware attentional integration (AAI) module to perform weighted integration of FR with SB feature maps. Our proposed AAI module is not only fully context-aware but also capable of learning complex relationships between input features by means of the sequential multi-scale channel and spatial sub-modules. Experimental results verify the superiority of our proposed network compared with the state-of-the-art (SoTA) SB prediction and FR methods.

More Like This

  • CIS
    Members: Free
    IEEE Members: Free
    Non-members: Free
01 Feb 2024

P4.15-Attention Mechanism

1.00 pdh 0.10 ceu
  • SPS
    Members: Free
    IEEE Members: Free
    Non-members: Free