Skip to main content
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 05:44
03 Apr 2020

Early and accurate diagnosis of Intracranial Hemorrhage (ICH) has a great clinical significance for timely treatment. In this study, we proposed a deep learning method for automatic ICH diagnosis. We exploited three windowing levels to enhance different tissue contrasts to be used for feature extraction. Our convolutional neural network (CNN) model employed the EfficientNet-B2 architecture and was re-trained using a published annotated computer tomography (CT) image dataset of ICH. The performance of our model has the overall accuracy of 0.973 and precision of 0.965. The processing time is less than 0.5 second per image slice.

Value-Added Bundle(s) Including this Product

More Like This

  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00