Nonlinear Microwave Circuits Part II Design of High Efficiency Power Amplifier Using Nonlinear Embedding Slides
Patrick Roblin
-
MTT
IEEE Members: $9.00
Non-members: $14.00Pages/Slides: 56
In Part II of this Webinar, we will explore how NVNA’s also find applications in the design of power amplifiers (PA). To optimize the power efficiency of PAs, specific internal modes of operation are usually targeted at the device current source reference planes as estimated using nonlinear de-embedding. However given the tremendous large search space for the multi-harmonic terminations for waveform engineering, it is beneficial to first use a nonlinear embedding device model to predict from the desired internal mode of operation, the required amplitude and phase of the multi-harmonic incident waves at the transistor measurement reference planes. The verification of the resulting amplifier power efficiency optimization can then be performed using NVNA measurements. Examples of such design for Doherty and Chireix amplifiers will be presented. Finally in addition to CW signals, pulsed or modulated signals can also be measured by NVNAs. This is particularly important for nonlinear devices such SOS-MOSFET or GaN HEMTs which are affected by various low-frequency memory effects such as parasitic bipolar junction transistor effects, self-heating, and cyclo-stationary charging of traps. Recent techniques reported for low-duty rate pulsed and modulated RF NVNA measurements will then be reviewed to shine new light in the time-varying response of transistors excited by high peak to average power ratio (PAPR) modulated signals.