Skip to main content
  • PES
    Members: Free
    IEEE Members: Free
    Non-members: Free
    Pages/Slides: 8
20 May 2020

A novel Wye-wye transformer design for active system grounding, is described in this paper. Proposed as a solution to improve the ground fault performance in distribution line networks, the zero-sequence flux developed in the magnetic core of a transformer is on a ground fault harvested by coils wound around three limbs, or extra limb(s) in a Wye-wye transformer. Built with three limbs, and no tertiary winding, the flux developed in the core on a ground fault is forced to return through air, which has a high reluctance, but with four or more limbs, the flux circulates in the transformer magnetic core, which has a low reluctance. Connected to one or more single-phase windings, the transformer neutral current is on a ground fault actively altered by fixed and switched load impedances. In theory, a ground fault arc is with a low current and delay in recovery voltage self-extinguishing, and no interruption in supply is required, but sustained, must be isolated. Proposed in this paper, for an active load switched grounding method, the neutral current on a sustained ground fault is increased to enable plain overcurrent and fuse protection to operate without the need of sensitive directional relay protection.

More Like This

  • IAS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $450.00
  • PES
    Members: Free
    IEEE Members: $45.00
    Non-members: $70.00
  • IAS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $450.00