CONVOLUTIONAL RECURRENT NEURAL NETWORK BASED DIRECTION OF ARRIVAL ESTIMATION METHOD USING TWO MICROPHONES FOR HEARING STUDIES
Abdullah Kucuk,Issa Panahi
-
SPS
IEEE Members: $11.00
Non-members: $15.00Length: 15:01
This work proposes a convolutional recurrent neural network (CRNN) based direction of arrival (DOA) angle estimation method, implemented on the Android smartphone for hearing aid applications. The proposed app provides a 'visual' indication of the direction of a talker on the screen of Android smartphones for improving the hearing of people with hearing disorders. We use real and imaginary parts of short-time Fourier transform (STFT) as a feature set for the proposed CRNN architecture for DOA angle estimation. Real smartphone recordings are utilized for assessing performance of the proposed method. The accuracy of the proposed method reaches 87.33% for unseen (untrained) environments. This work also presents real-time inference of the proposed method, which is done on an Android smartphone using only its two built-in microphones and no additional component or external hardware. The real-time implementation also proves the generalization and robustness of the proposed CRNN based model.