Auto-Encoder based Structured Dictinoary Learning
Deyin Liu, Lin Wu, Liangchen Liu, Qichang Hu, Lin Qi
-
SPS
IEEE Members: $11.00
Non-members: $15.00Length: 05:35
Dictionary learning and deep learning are two popular representation learning paradigms, which can be combined to boost the classification task. However, existing combination methods often learn multiple dictionaries embedded in a cascade of layers, and a specialized classifier accordingly. This may inattentively lead to overfitting and high computational cost. In this paper, we present a deep auto-encoding architecture which is coupled with a dictionary layer to straightly produce a dictionary for classification. To empower the dictionary with discrimination, we construct the dictionary with class-specific sub-dictionaries, and introduce supervision by imposing category constraints. The proposed framework is inspired by a sparse optimization method, namely Iterative Shrinkage Thresholding Algorithm, which characterizes the learning process by the forward-propagation based optimization w.r.t the dictionary only. Extensive experiments demonstrate the effectiveness of our method in image classification.