Lightweight Voice Anonymization Based On Data-Driven Optimization Of Cascaded Voice Modification Modules
Hiroto Kai, Shinnosuke Takamichi, Sayaka Shiota, Hitoshi Kiya
-
SPS
IEEE Members: $11.00
Non-members: $15.00Length: 0:13:59
In this paper, we propose a voice anonymization framework based on data-driven optimization of cascaded voice modification modules. With increasing opportunities to use speech dialogue with machines nowadays, research regarding privacy protection of speaker information encapsulated in speech data is attracting attention. Anonymization, which is one of the methods for privacy protection, is based on signal processing manners, and the other one based on machine learning ones. Both approaches have a trade off between intelligibility of speech and degree of anonymization. The proposed voice anonymization framework utilizes advantages of machine learning and signal processing-based approaches to find the optimized trade off between the two. We use signal processing methods with training data for optimizing hyperparameters in a data-driven manner. The speech is modified using cascaded lightweight signal processing methods and then evaluated using black-box ASR and ASV, respectively. Our proposed method succeeded in deteriorating the speaker recognition rate by approximately 22% while simultaneously improved the speech recognition rate by over 3% compared to a signal processing-based conventional method.