Skip to main content
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 0:13:41
19 Jan 2021

This paper presents a predictive study on the progress of conversations. Specifically, we estimate the residual life for conversations, which is defined as the count of new turns to occur in a conversation thread. While most previous work focus on coarse-grained estimation that classifies the number of coming turns into two categories, we study fine-grained categorization for varying lengths of residual life. To this end,we propose a hierarchical neural model that jointly explores indicative representations from the content in turns and the structure of conversations in an end-to-end manner. Extensive experiments on both human-human and human-machine conversations demonstrate the superiority of our proposed model and its potential helpfulness in chatbot response selection.

Value-Added Bundle(s) Including this Product

More Like This

  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00