Skip to main content

TRICKVOS: A BAG OF TRICKS FOR VIDEO OBJECT SEGMENTATION

Evangelos Skartados, Konstantinos Georgiadis, Mehmet Kerim Yucel, Koskinas Ioannis, Armando Domi, Anastasios Drosou, Bruno Manganelli, Albert Saa-Garriga

  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
Poster 09 Oct 2023

Space-time memory (STM) network methods have been dominant in semi-supervised video object segmentation (SVOS) due to their remarkable performance. In this work, we identify three key aspects where we can improve such methods; i) supervisory signal, ii) pretraining and iii) spatial awareness. We then propose TrickVOS; a generic, method-agnostic bag of tricks addressing each aspect with i) a structure-aware hybrid loss, ii) a simple decoder pretraining regime and iii) a cheap tracker that imposes spatial constraints in model predictions. Finally, we propose a lightweight network and show that when trained with TrickVOS, it achieves competitive results to state-of-the-art methods on DAVIS and YouTube benchmarks, while being one of the first STM-based SVOS methods that can run in real-time on a mobile device.

More Like This

  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00